Active Pre-Alignment of the CLIC Supporting System Using

@\ Closed Loop Control as a Solution for Mechanical Component’s
2 Nonlinearities and Assembly Inaccuracies

The most critical CLIC RF components need to be pre-aligned within 14 um rms with respect 1o a straight reference line along a sliding window
of 200 m.
A system based on supporting structures (girders and cradles) connected in
tested. A special test mock-up was built at CERN to demonstrate, inter alia, the fe:
achieve the requirements, all main parts of the CLIC mock-up were machined with

reference axis/zero of the component with respect to external alignment references called fi
equipped with high precision Wire Position Sensors (WPS) and inclinometers — giving feedback data to compute the pe
w.r.t. reference coordinate system (linked to stretched wire). All tests were perfor med under the control of specially designed software to examine the
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system behaviour during repos itioning and verify the operation of pre-alignment control algorithms
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F “Snake” type girders configuration ‘

(a) Girders MASTER cradle - 3 degrees of freedom
All CLIC RF components will be installed on modular The cradle is suspended on two vertical B

girders, which will be used as a support for their pre- stors and is connected with one radial

actue
actuator. The actuators control the X-Y

alignment.

(b) Cradles position as well as the roll of a cradle
Each girder is equipped with two side
MASTER and SLAVE “cradle”. Motorization is
installed only on the MASTER cradle. The non-
motorized SLAVE cradle is driven by the adjacent
girder. This solution smooths out “naturally” the pre-
alignment of adjacent girders.

resultingina 3 DOF mechanism

interfaces called
“Spake” type configuration - 5 degrees
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a combination of cradles MASTER-SI AVE-MASTER allows girder position
control in 5§ DOF. The whole “snake™ structure can be pre-aligned by setting the
adles in one line w.r.t. reference axis
1 which shall be an external and

e I g of freedom
\ use longitudinal motion 1s blocked mechanically at the MASTER side,

beam axis positions of all MASTER cr:

(c) Articulation points

MASTER-SLAVE connection quality plays a very important role
after pre-alignment should be lower than 10 pm rms.

coming from the tunnel coordinate systemn

in the “snake” type girder configuration
independent reference for component alignment /

chrconneclion offset error

ster cradle kinematics — theoretical approach

The 3 DOF MASTER cradle, equipped with linear actuators,
can be considered as an object in the 2D space. It forms a triple, e

parallel P-R-R (prismatic-rotation-rotation) kinematics circuit, ; V-
defined by cradle vectors (p,©) and base coordinates (b, h®, :
1,3). The cradle is suspended on joints (links) of constant length

1, and the joints are attached to the actuators of variable height l

h;. Inverse kinematics equations based on the vectors can give ey
the wanted actuator lengths to reach requested cradle orientation

(open-loop control).
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F Simulations and tests results

Algorithm implementation and tests Simulated single step response Real MASTER cradle step response

To verify algorithm performance, the mathematice i i i iffe initi
B oyf cfmro] algorithm :;tj ;:L/\:?;l;;ll1Al1;rl S|nnu|auom with different initial regulation positions The mock-up tests confirmed simulation results: for both tested cradles the
@ STER cradle showed that the algorithm is convergent i i = : i : : 2
e SN > o . alg S ergent in two final position was achiev ed in two to maximum three regulation s! withi
s as crealed.' The con'xpox.mm II"deurdCICb regulation cycles for displacements ranges: [+1 mm +1 the sensor noise) llv-'v“k%"ml. L
inearities were mdyded in simulation. Cradle mm =1 mrad] with final position error lower than 1 pm. 7 T :
response for requested position change was verified. i - The WPS sensor noise was
oy« taration mumber) 9 .
o e o at the level of 5 pm_; and
pili by by | e | — = = inclinometer noise at the
| . e
3 F | = level of 5 prad,
9 aars | i B
- oo (st wrors o reiaave | Actnos ‘ . "l
(- = o e st s e S ol ye | of | . Maximal absolute value of 4«
f S ] a : requested position was
: e x P overshot after il ;
In parallel, a series of similar tests was performed on iteration by | & l'l'l\rst
] | Z ? /. less an .|
a real mock-up. Two different cradle responses were ] [ ] m 50 pm y

\_observed. w

Conclusions

Closed | ion — i i i i

£ gne(;(:? regulatu.)n S0 Ia!' only tested with relative displacements — exempt us from problems with cradle suspension

iteral:ion nu;ﬁ:ccu;:t.:les. There_ls also no sngn.lh?anl effect of components nonlinearities and inaccuracies for the final algorithm
er. This was confirmed by the similar results observed for all the tested conditions.



